Structure and function of the ependymal barrier and diseases associated with ependyma disruption

نویسندگان

  • Antonio J Jiménez
  • María-Dolores Domínguez-Pinos
  • María M Guerra
  • Pedro Fernández-Llebrez
  • José-Manuel Pérez-Fígares
چکیده

The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Mpdz impairs ependymal cell integrity leading to perinatal‐onset hydrocephalus in mice

Hydrocephalus is a common congenital anomaly. LCAM1 and MPDZ (MUPP1) are the only known human gene loci associated with non-syndromic hydrocephalus. To investigate functions of the tight junction-associated protein Mpdz, we generated mouse models. Global Mpdz gene deletion or conditional inactivation in Nestin-positive cells led to formation of supratentorial hydrocephalus in the early postnata...

متن کامل

Streptococcus pneumoniae-induced inhibition of rat ependymal cilia is attenuated by antipneumolysin antibody.

Ciliated ependymal cells line the ventricular surfaces and aqueducts of the brain. In ex vivo experiments, pneumolysin caused rapid inhibition of the ependymal ciliary beat frequency and caused ependymal cell disruption. Wild-type pneumococci and pneumococci deficient in pneumolysin caused ciliary slowing, but penicillin lysis of wild-type, not pneumolysin-deficient, pneumococci increased the e...

متن کامل

Subventricular zone-mediated ependyma repair in the adult mammalian brain.

The subventricular zone (SVZ) of the adult mouse brain is a narrow stem cell niche that lies along the length of the lateral wall of the lateral ventricles. The SVZ supports neurogenesis throughout adulthood; however, with increasing age, the ventral SVZ deteriorates and only the dorsolateral SVZ remains neurogenic. Associated with the elderly dorsolateral SVZ, we reported previously an increas...

متن کامل

فراورده‌های مرطوب‌کننده‌ی پوست

The function of the horny layer of the skin as a barrier is to protect the underlying tissues from infection, dryness, and mechanical stress. Disruption of this function results in increased transepidermal water loss (TEWL) and is associated with conditions like atopic dermatitis and other chronic skin diseases. Moisturizers have been shown to improve these conditions through restoration of the...

متن کامل

Immunodistribution of amyloid beta protein (Aβ) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients.

RAGE (receptor for advanced glycation end-products) participates in the influx transport of glycated Aβ (amyloid beta) from the blood to the brain. Because little is known of the RAGE operating in brain barriers such as those in the choroid plexus and ependyma, the aim of the present study was to examine the immunodistributions of RAGE and Aβ peptides in the choroid plexus where the blood-cereb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014